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Bondi-Sachs formalism in a nutshell

Description at null-infinity of the dynamic and, in particular, the
change of mass and total momentum of a system through the
emission of gravitational waves.



Objectives

▶ Present the Bondi and Bondi-Sachs metrics

▶ Explain what the news function / tensor is

▶ Show where the mass-loss and momentum-loss formulae come
from

▶ Explain briefly what the memory effect is and its relation to
the news tensor
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Preliminaries



Notation

▶ Signature: (−,+,+,+)

▶ Partial derivatives: fu, fr , fθ, fϕ, . . . , or ∂µ for tensors

▶ General tensor identities: gab, Rab, . . .

▶ Tensor identities in a given base: gµν , Rµν , . . .

▶ “Geometrized” units G = c = 1

A link to all sources, a copy of the thesis and these slides is
provided at the end of this presentation.



Retarded time

Consider the Minkowski metric:

g = −dt2 + dr2 + r2(dθ2 + sin2 θ dϕ2 ). (1)

Let us introduce null-coordinate u such that

u = t − r .

Thus, equation (1) becomes

g = −du2 − 2du dr + r2(dθ2 + sin2 θ dϕ2 ) (2)
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Retarded time

The coordinate u satisfies:

gµν(∂µu)(∂νu) = 0. (3)

Hypersurfaces u = constant are light-like. Normal vector ka of
such surfaces satisfies

kµ = ∂µu, kaka = 0, kb∇bk
a = 0,

and generate rays, along which θ and ϕ are constant.
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Figure: Illustration of a retarded time coordinate system. Source [5]
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The Bondi metric

First, we list the requirements for the metric:

▶ Describe an isolated system

▶ Asymptotically flat

▶ Not necessarily static

▶ Axially symmetric (requirement is dropped later on)
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The Bondi metric

As for the coordinates u, r , θ and ϕ, we wish to keep the properties
of the coordinates of the retarded time Minkowski metric:

▶ Hypersurfaces u = constant everywhere tangent to the local
lightcone

▶ r is the corresponding luminosity distance, i.e. area of surface
element u, r = constant given by r2 sin θ dθ dr

▶ θ and ϕ constant along rays



The Bondi metric

As for the coordinates u, r , θ and ϕ, we wish to keep the properties
of the coordinates of the retarded time Minkowski metric:

▶ Hypersurfaces u = constant everywhere tangent to the local
lightcone

▶ r is the corresponding luminosity distance, i.e. area of surface
element u, r = constant given by r2 sin θ dθ dr

▶ θ and ϕ constant along rays



The Bondi metric

As for the coordinates u, r , θ and ϕ, we wish to keep the properties
of the coordinates of the retarded time Minkowski metric:

▶ Hypersurfaces u = constant everywhere tangent to the local
lightcone

▶ r is the corresponding luminosity distance, i.e. area of surface
element u, r = constant given by r2 sin θ dθ dr

▶ θ and ϕ constant along rays



The Bondi metric

As for the coordinates u, r , θ and ϕ, we wish to keep the properties
of the coordinates of the retarded time Minkowski metric:

▶ Hypersurfaces u = constant everywhere tangent to the local
lightcone

▶ r is the corresponding luminosity distance, i.e. area of surface
element u, r = constant given by r2 sin θ dθ dr

▶ θ and ϕ constant along rays



The Bondi metric

Thus, we arrive at the metric first presented by Bondi in [1]:

g = (U2r2e2γ − Vr−1e2β)du2 − 2e2βdu dr

− 2Ur2e2γdu dθ + r2(e2γdθ2 + e−2γ sin2 θ dϕ2 ),

together with its inverse

gµν =


0 −e−2β 0 0

−e−2β V e−2βr−1 −Ue−2β 0
0 −Ue−2β e−2γr−2 0
0 0 0 e2γr−2 sin−2 θ

 ,

where β, γ, U and V are functions of u,r and θ.
Note that g00 = 0, hence gµν(∂µu)(∂νu) = 0.
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The Bondi metric

For the Bondi metric

g = (U2r2e2γ − Vr−1e2β)du2 − 2e2βdu dr

− 2Ur2e2γdu dθ + r2(e2γdθ2 + e−2γ sin2 θ dϕ2 ),

choosing the following values for the coefficients

β = 0, γ = 0, U = 0, V = r ,

yields the Minkowski metric.



Vacuum field equations

We wish to solve Einstein’s vacuum field equations for the Bondi
metric:

Rµν = 0.

In our case, it holds identically that

R03 = R13 = R23 = 0.

Furthermore, from the Bianchi identities it follows that

R01 = 0

as a consequence of

R11 = R12 = R22 = R33 = 0 (4)
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Vacuum field equations

Thus, the vacuum field equations are reduced to the four
independent equations

R11 = R12 = R22 = R33 = 0,

known as main equations

, and the supplementary conditions

0 = r−2e−2β(r2R02)r , (5)

0 = r−2e−2β(r2R00)r + (g12∂1 + g22∂2 − gµνΓ2µν)R02, (6)

derived from the Bianchi identities similar to R01 = 0.
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Series expansion

The Sommerfeld’s radiation condition 1 suggests ansatz in form of
negative powers of r

γ = γ1r
−1 + γ2r

−2 . . .

β = . . . β−1r + β0 + β1r
−1 + β2r

−2 . . .

U = . . .U−1r + U0 + U1r
−1 + U2r

−2 . . .

V = . . .V−1r + V0 + V1r
−1 + V2r

−2 . . .

 . (7)

Equivalent to
lim
r→∞

(rγ)r |u=const = 0 (8)

1Isolated system; we consider only solutions radiating outwards
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Solution of the Bondi metric

Thus, R11 = R12 = R22 = R33 = 0 together with ansatz (7) yields

γ = cr−1 + [C − 1

6
c3]r−3 + . . . ,

β = −1

4
c2r−2 + . . . ,

U = −(cθ + 2c cot θ)r−2 + [2N + 3ccθ + 4c2 cot θ]r−3

+ . . . ,

V = r − 2M − [Nθ + N cot θ − c2θ − 4ccθ −
1

2
c2(1 + 8 cot2 θ)]r−1

+ . . . ,

where c(u, θ), M(u, θ) and N(u, θ) are integration functions from
solving the vacuum field equations. C (u, θ) is a composition of
them.
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Solution of the Bondi metric

Similarly, the supplementary conditions

0 = r−2e−2β(r2R02)r ,

0 = r−2e−2β(r2R00)r + (g12∂1 + g22∂2 − gµνΓ2µν)R02,

yield

Mu = −c2u +
1

2
(cθθ + 3cθ cot θ − 2c)u, (9)

−3Nu = Mθ + 3ccuθ + 4ccu cot θ + cucθ. (10)

Known as the mass-loss and momentum-loss formulae.
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News and mass-loss

The mass of the system is defined as the mean value of M(u, θ)
over the sphere

m(u) =
1

2

∫ π

0
M(u, θ) sin θ dθ . (11)

Hence

mu = −1

2

∫ π

0
c2u sin θ dθ . (12)

Therefore, changes in the system are contained within cu, which
receives for this reason the name news function.
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Main result of the publication of Bondi, Van der Burg and
Metzner

The mass of a system is constant if and only if there is no news. If
there is news, the mass decreases monotonically as long as the
news continues [2].



The Bondi-Sachs metric



The Bondi-Sachs metric

We now turn our attention to the more general Bondi-Sachs
metric. We list again our requirements for the metric:

▶ Describe an isolated system

▶ Asymptotically flat

▶ Not necessarily static

▶ Axially symmetric



The Bondi-Sachs metric

As for the coordinates u, r , θ and ϕ, we wish to keep the properties
of the coordinates of the retarded time Minkowski metric:

▶ Hypersurfaces u = constant everywhere tangent to the local
lightcone

▶ r is the corresponding luminosity distance, i.e. area of surface
element u, r = constant is r2 sin θ dθ dr
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The Bondi-Sachs metric

The coordinates u, r , θ and ϕ obey the latter requirements if and
only if the metric has the form [4]:

g = −2e2βdu (dr + Fdu ) + r2qAB(dσ
A − UAdu )(dσB − UBdu ),

(13)
with the inverse

g−1 = 2F e−2β∂r∂r − 2e2β∂u∂r − 2e−2βUA∂r∂A + r−2qAB∂A∂B ,
(14)

where A,B = 2, 3 and σ2,3 = θ, ϕ.
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Comparison with the Bondi metric

The Bondi metric

g = (U2r2e2γ − Vr−1e2β)du2 − 2e2βdu dr

− 2Ur2e2γdu dθ + r2(e2γdθ2 + e−2γ sin2 θ dϕ2 ),

is a special case of the Bondi-Sachs metric

g = −2e2βdu (dr + Fdu ) + r2qAB(dσ
A − UAdu )(dσB − UBdu ).

To see this, let

F = V /2r , β = βBondi, UA = (UBondi, 0),

qAB =

(
e2γ 0
0 e−2γ sin2 θ

)
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Series expansion

As it was the case with the Bondi metric, the coefficients of the
Bondi-Sachs metric can also be expanded and take the following
form:

F (u, r , σA) = F̄ (u, σA)− M

r
+ . . . ,

β(u, r , σA) =
β̄(u, σA)

r2
+ . . . ,

qAB(u, r , σ
A) = q̄AB(u, σ

A) +
cAB
r

+ . . . ,

UA(u, r , σA) =
Ū(u, σA)

r2
− 2

3r3
q̄AB

(
P̄A + cBC Ū

C + ∂B β̄
)
+ . . . ,

where q̄AB is the metric of the round 2-sphere.
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Equations of motion

Solving Einstein’s field equations order by order in r yields

0 = (q̄AB)u,

0 = β̄ +
1

32
cABc

AB ,

0 = R̄ − 4F̄ ,

0 = ŪA +
1

2
∇̄Bc

AB ,

where R̄ is the Ricci scalar and ∇A is the Levi-Civita connection
with respect to the q̄AB metric.

We define the news tensor as follows:

NAB = (cAB)u (15)
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Equations of motion: Mass-loss and momentum-loss
formulae

Using our definition of the news tensor while solving the field
equations yields the loss formulae:

Mu = −1

8
NABN

AB +
1

4
∇̄A∇̄BN

AB ,

(P̄A)u = ∇̄AM +
1

8
∇̄A

(
cBCNCB

)
− 1

4
NBC ∇̄AcBC

+
1

4
∇̄C

(
∇̄A∇̄BC

BC − ∇̄C ∇̄BCAB

)
+

1

4
∇̄B

(
NBCcAC − cBCNAC

)
.



Memory effect



Memory effect

Permanent relative displacement due to a burst of gravitational
waves [3].



Memory effect

(a) Without memory effect (b) With memory effect

Figure: Sketch of the metric perturbation as a function of time. Source
[3]



Memory effect

Let us consider the deviation equation for particles in free fall:

(va∇a)
2ξb = −R b

acd vavdξc . (16)

Near null-infinity we have va = δa0. Hence, equation (16) reduces
to

(ξµ)uu = −R µ
0α0 ξα, (17)

where for r → ∞, Rabcd ∼ Cabcd (Cabcd is the Weyl tensor).
On the other hand, one can prove that

C0A0B = −1

2
(NAB)u. (18)

Thus, the news tensor is not only related to the energy radiated
through gravitational waves, but also the memory effect.
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Further developments

The proposal for future work is to use the loss formulae and results
like, for example the memory effect, to fingerprint different theories
of modified gravity.

A method to discard or validate alternative
theories.
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Summary

▶ Using a set of coordinates based on the retarded time
Minkowski metric we introduced the family of Bondi-Sachs
metrics.

▶ Solving Einstein’s vacuum equations yields the loss formulae,
which describe change of mass and total momentum of a
system due to emission of gravitational waves.

▶ The news tensor, closely related to the loss formulae,
describes how the emission of gravitational waves is related to
the memory effect in general relativity.

▶ It may be possible in the future to discard or validate theories
of alternative gravity based on these results.



Summary

▶ Using a set of coordinates based on the retarded time
Minkowski metric we introduced the family of Bondi-Sachs
metrics.

▶ Solving Einstein’s vacuum equations yields the loss formulae,
which describe change of mass and total momentum of a
system due to emission of gravitational waves.

▶ The news tensor, closely related to the loss formulae,
describes how the emission of gravitational waves is related to
the memory effect in general relativity.

▶ It may be possible in the future to discard or validate theories
of alternative gravity based on these results.



Summary

▶ Using a set of coordinates based on the retarded time
Minkowski metric we introduced the family of Bondi-Sachs
metrics.

▶ Solving Einstein’s vacuum equations yields the loss formulae,
which describe change of mass and total momentum of a
system due to emission of gravitational waves.

▶ The news tensor, closely related to the loss formulae,
describes how the emission of gravitational waves is related to
the memory effect in general relativity.

▶ It may be possible in the future to discard or validate theories
of alternative gravity based on these results.



Summary

▶ Using a set of coordinates based on the retarded time
Minkowski metric we introduced the family of Bondi-Sachs
metrics.

▶ Solving Einstein’s vacuum equations yields the loss formulae,
which describe change of mass and total momentum of a
system due to emission of gravitational waves.

▶ The news tensor, closely related to the loss formulae,
describes how the emission of gravitational waves is related to
the memory effect in general relativity.

▶ It may be possible in the future to discard or validate theories
of alternative gravity based on these results.



Summary

▶ Using a set of coordinates based on the retarded time
Minkowski metric we introduced the family of Bondi-Sachs
metrics.

▶ Solving Einstein’s vacuum equations yields the loss formulae,
which describe change of mass and total momentum of a
system due to emission of gravitational waves.

▶ The news tensor, closely related to the loss formulae,
describes how the emission of gravitational waves is related to
the memory effect in general relativity.

▶ It may be possible in the future to discard or validate theories
of alternative gravity based on these results.
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