Thomas' Labs

Solving the laplace equation in Spherical coordinates

Disclaimer

This site as of now just a technology demonstration and its claims should not be taken as true (even though I myself am pretty confident they are)

Laplace equation

spherical-harmonics_b808f03ef6dd64648fcf4cd4d0fb9282a290b3fc.svg

Solutions to this equation are called harmonics

Laplace equation in spherical coordinates

Using the definition for the laplace operator in spherical coordinates, it follows:

spherical-harmonics_1575c5d98d7e6fe3c74f58b643d9889cc277b533.svg

Using sepration of variables spherical-harmonics_2c11875b2762f1fd57e1142447de75af7737f4c4.svg becomes

spherical-harmonics_535285afce47e4750798b74b60379110c1a06e36.svg

Applying this to the original equation produces

spherical-harmonics_82722b6589b380fa4682c61634ba84e33882104e.svg

Because the terms depend on different independant variables, the only way the equation holds is if both terms are constant.

spherical-harmonics_a1f0092af5c408d941d558956cac9bf7eea87db5.svg

Angle dependant term

We again use separation of variables to solve the partial differential equation of the angle dependant term.

spherical-harmonics_3a6307972292c92b8ee4b87995f32ccbb1150cc3.svg

Replacing into the equation

spherical-harmonics_e7d40d4495c63a085af11fb1c973cdf1ddc2703e.svg

Based on a similar argument it follows that both terms must be constant, with this we may now solve for spherical-harmonics_53b91e2f0328d37d2be32d698097b48a2ee35dd2.svg

spherical-harmonics_dd9c3f7a8d3c7299cce85fe4d1fd204b6ce8a310.svg
spherical-harmonics_cce42890212b206667d5d19f7e3cd9a7d99c4b8e.svg
spherical-harmonics_8b78766431c256b4e74170f03a1cfd3861cb3a80.svg
spherical-harmonics_cf4889113adc4cdaa3abff2b38a82b8fae0d0b04.svg
spherical-harmonics_efc22a0e850e61909a1daeeaba9580d67be1f7a3.svg
spherical-harmonics_786eaf785741cf6f8a122735b3dbd1d3a0079d06.svg
spherical-harmonics_03fba3a63b72ca38b6eeea2d589c35a3cec1eefd.svg
spherical-harmonics_abe04d05faac78ff684ff665f6e4fb34a304dd84.svg
spherical-harmonics_b079e384764d4d920c25ca634e1339db38d5cd32.svg
spherical-harmonics_5bf570b9357ada2083a82de0814646f7351a3668.svg
spherical-harmonics_804fc7f4dcef3a42f660f4be9d68b6eb21a8f387.svg
spherical-harmonics_23d4b5395a9a614ad035adbaa3f2cadafbb2b4f6.svg
spherical-harmonics_19adf1c52de07712d38bbf457255509fd08f4a75.svg

Solve using Frobenius Method